MCSs 80/85
RELOCATABLE OBJECT MODULE
FORMATS

An Intel Technical Specification

Order Number: 121747-001

gopyright@QIQBI Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literaiure may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intet Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intei’s software license, or as defined in ASPR
7-104.9(aN9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Inte{ Corporation.

The following are trademarks of Intet Corporation and its affiliates and may be used oniy to identify Intel

products:
BXP Intelevision Multibus
CREDIT Intetfec Mulitimodule
i IRMX Plug-A-Bubble
ICE iSBC PROMPT
iCS iSBX Promware
im Library Manager RMX/R0
[nwuie MCS System 2000
Intet \Megachassis UP1
intgl Micromap uScope

and the combination of ICE. iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

u | [(A335/381/500

IP |

PREFACE

This manual defines the internal format of 8080/8085 relocatable
object files produced by Intel's resident or cross product language
translators and read by other 1Intel software products. The
information in this manual is normally not needed in order to use
Intel software, but is provided for the person who needs to write
programs to process these object files or to create files in the
same format,

The character set of the American Standard Code for Information
Interchange (ASCII) is defined in the following document:

American National Standard Institute, Code for Information
Interchange, X3.4-1968.

The information contained in this document is subject to change
without notice. 1Intel makes no warranty of any kind with regard to
this material and specifically disclaims all implied warranties
including merchantability and fitness of a particular purpose.
Intel will not be 1liable for errors contained herein or for
incidental or consequential damages arising out of the furnishing,
performance, or use of this material. Intel assumes no
responsibility for the use or reliability of its software when used
on equipment that is not furnished by Intel.

CONTENTS

INTRODUCTION
SEGMENTATION OF PROGRAMS .
RECORD FORMAT DIAGRAMS .
COMMON RECORD FIELDS .
MODULE HEADER RECORD .

MODULE END RECORD T)
NAMED COMMON DEFINITIONS RECORD
EXTERNAL NAMES RECORD
PUBLIC DECLARATIONS RECORD . .
CONTENT RmoRD L] * L] L] L] L] L]

FIXUP RECORDS e o o o o o
RELOCATION RECORD . . .
INTER-SEGMENT REFERENCES REC
EXTERNAL REFERENCES RECORD

DEBUG RECORDS
MODULE ANCESTOR RECORD .« .
LOCAL SYMBOLS RECORD
LINE NUMBERS RECORD .

END OF FILE RECORD o o e

LIBRARY RECORDS . . « « « &

R

s e o Oe o o o o s o
e e ¢ e o o o o o o

LIBRARY HEADER RECORD
LIBRARY MODULE NAMES RECORD .
LIBRARY MODULE LOCATIONS RECOR
LIBRARY DICTIONARY RECORD .
PROPER ORDER OF RECORDS

APPENDIX:
APPENDIX:
APPENDIX:

RECORD FORMATS
SEGMENT COMBINATION . . .
SEGMENT LOCATING . s e

o e De o o o o o

L] L] L 4 L]

INTRODUCTION

Execution of computer programs requires that programs be loaded into
memory. Therefore, a method of representing a desired memory state
(memory content, memory image) is required.

This document defines a set of formats that permit specification of
relocatable memory images that may be linked one to another. We
assume that "relocation™ and "linkage" are primitive concepts that
need not be defined.

The reader may wish to refer to the ISIS-II USER'S GUIDE for
additional information on relocation and linkage.

page 2 8080 Object Module Formats

SEGMENTATION OF PROGRAMS

An object module contains one or more components called Segments.
Except for the Absolute Segment, a Segment defines a contiguous area
of memory. Semantics of Segments are pre-defined, and vary £from
Segment to Segment (see also the Appendix on Segment Combination and
Segment Locating for additional information on the properties of the
different segments). The Segments are identified by numbers:

0. ABSOLUTE SEGMENT.

The Absolute Segment is not actually a segment. However, in the
object module format, several varieties of information must be
preceded by a "Segment ID" that identifies the Segment to which the
information belongs. The number zero is used to precede similar
information that belongs to no Segment, but is absolute. References
to the Absolute Segment should be understood to refer to the
collection of all such information within a Module, without
implication of contiguity or relocatability of that information.

l. CODE SEGMENT.

The translator puts information into the Code Segment which |is
destined for ROM. Such information may be the executable code
produced by the PL/M compiler, or any information in Assembly
Language following a CSEG directive.

2. DATA SEGMENT.

The semantics of this Segment are the same as those of the Ccde
Segment, except that the information is destined for RAM.

3. STACK SEGMENT.

This Segment is, at run time, a contiguous area of RAM that is useq
as a run-time stack. Normally translators will not define symbols
or structures in this area, but will assume the existence of a
distinguished Name (e.g., STACK in 8080/8085 ASSEMBLY LANGUAGE) for
the highest memory byte of this Segment.

4. MEMORY SEGMENT.

'This Segment is, at run time, a contiquous area of RAM located in
high address space (just below the address returned by the MDS
MONITOR function MEMCK). Normally, translators will not define
symbols or structures in this area, but will assume the existence of

a distinguished Name (e.g., MEMORY in PL/M) for the lowest memory
byte of this Segment.

8080 Object Module Formats page 3

5. RESERVED SEGMENT

The Segment identified by the number five is reserved for use by
future Intel software.

254, 253, 252, ... 6. NAMED COMMON SEGMENTS

Each module may define a mapping between these segment numbers and
FORTRAN Common Names. At link time, LINK will produce an output
mapping that will maintain a unique number for each Common Name
(thus there is a limitation that no more than 249 distinct Common
areas may exist), and will resolve references to each Common area 1n
the same fashion that references to the unnamed Common are resolved.

255. UNNAMED COMMON SEGMENT.
This Segment corresponds to FORTRAN's "blank" Common area. Several

modules may define the size of this Segment; LINK will resolve these
definitions in a single contiguous memory area.

page 4 8080 Object Module Formats

RECORD FORMAT DIAGRAMS

The record format diagrams use the following conventions:

ddkddk ik kkkkkhkkkhkkkk ****/\/\/****

* % % ¥ * %

* *
* *
* *
* *
* *
* *

* % N N W *

* *
* *
* *
* *
* *
kkkkk kkkkhkkkkkkkkk

A AWAVAT L
(A) (B) (€)

(A) represents a single-byte field; (B) represents a two-byte field
that specifies a 1lé6-bit value (8080 standard, i.e., low-order, or
first byte <contains the low-order half of the number); (C)
represents a field of a variable number of bytes.

Some records contain a field or series of fields that may be

repeated. Such portions are indicated by the "REPEATED" or "RPT"
brackets in the diagrams.

Any field that indicates a "Name" has the following internal
structure: the first byte contains a number between 1 and 255,
inclusive, which indicates the number of remaining bytes in the
field. These remaining bytes are interpreted as a byte string.
Most translators will choose to constrain the wvalues of thnese
remaining bytes to ASCII codes of printable characters, but nothing
in this specification requires such constraint.

A field marked "OFFSET" specifaes a wvalue in conjunction with
another piece of information, a Segment ID. henever a SEG ID fielad
immediately precedes an OFFSET field, it determines the SEGMENT for
which the OFFSET field gives an offset., If a SEG ID field does not
immediately precede the OFFSET field, (which occurs only in Fixup
Records), then that offset is with respect to the SEG ID field in
the previous Content Record.

Any field that indicates an "OFFSET" represents a value that 1is
determined by adding the wvalue in the offset field to the value of
the base of the designated Segment.

Any field with an "X" through it contains unspecified information
and 1is to be ignored (but the field must be present where
indicated). These fields are reserved for use by future Intel
software. They must contain zeros, any value other than 2zero may
not be compatible with current or future Intel products.

8080 Object Module Formats page 5

COMMON RECORD FIELDS

All record formats share this common organization: (1) The first
byte is a field that contains a number that identifies which kind of
record the record is. This is the RECORD TYPE (REC TYP) field. (2)
The next two bytes are a field that contains a number called the
RECORD LENGTH. It is the total number of bytes in the record,
exclusive of the three bytes that comprise the RECORD TYPE and
RECORD LENGTH fields. (3) The last byte in every record is the CHECK
SUM (CHK SUM) field; it contains the two's complement of the sum
modulo 256 of all other bytes in the record.

The maximum value contained in any RECORD LENGTH field is 1025
(decimal), with the exception of (1) Library Records, and (2)
Content Records that specify the Absolute Segment in their SEG ID
field and have no Fixup Records immediately following.

page 6 8080 Object Module Formats

MODULE HEADER RECORD

**********************/\/\/****t**

* * * x\ 7\ / x * * *
* REC * RECORD * MODULE =\ oy / * SEG * SEGMENT * ALN * CHK
* TYP * LENGTH * NAME * X * X * I D * LENGTH * TYP * SUM
* 02H =* * * g\ * / \ * * * *
: * * */ \ */ \ * * * *

*********************/\/\/********t**************************************

This Record is the first record in an object module. It identifies
the Module and defines the segments that are used by the module.

MODULE NAME

Every Module has a Name. The Module name will be listed in various
summary listings produced by the LIB, LINK and LOCATE programs, and
is a "handle" by which the user may desSignate certain Modules to
programs such as LIB and LINK.

A valid module name contains between 1 and 31 characters, inclusive,
each of which must be a capital letter (A, B, ..., 2), a digit (O,
1, 2, ..., 9), a guestion mark (?) or a commercial at sign ().
Furthermore, the first character of a module name may not be a digit.

"X" FIELDS

These fields are reserved for use by future Intel software, they
must contain zeros.

SEG ID, SEGMENT LENGTH and ALIGNMENT TYPE (ALN TYP)

Every Module Header Record contains zero or more of these field
trios. Each trio identifies a Segment by giving its identifying
number, the length (size) in bytes, and the alignment type (also
called the relocation type) of the Segment in the Moaule. No
Segment may appear in more than one such trio; no Segment may appear
in a Module unless its length (or an upper bound on its length) has
been given in the Module Header Record. (Except the Memory Segment,
which, 1if present, provides a lower bound (possibly zero) on its
required length.)

The Absolute Segment 1is the exception to these rules. Since
absolute information within a Module may be discontiguous, and since
it cannot be "relocated", the "length" and "alignment type" of such
information have no meaning. Thus, the Absolute Segment may not be
specified in a SEG ID field of a Module Header Record.

8080 Object Module Formats page 7

The ALN TYP field specifies the type of alignment that must be

applied to a Segment when it is relocated. This field must contain
one of the following: 1, 2 or 3.

1l indicates that the Segment must fit within a single Page when
relocated. A Page of memory is 256 bytes beginning on a Page
boundary (see below). This is also called In-page relocatable.

2 indicates that the Segment must begin on a Page boundary when
relocated. Page boundaries occur in multiples of 256 Dbytes

beginning with zero (0, 256, 512, etc.) This is also called Page
relocatable.

3 indicates that the Segment may begin on any byte bourdary when
relocated, This is also called Byte relocatable.

Additional information on these alignment types is found in the

8080/8085 ASSEMBLY LANGUAGE PROGRAMMING MANUAL and the 1ISIS-II
USER'S GUIDE.

page 8 8080 Object Module Formats

MODULE END RECORD

***************************************t******/\/\/**********

* %* %* * * *
* REC * RECORD * MOD * SEG * OFFSET * OPTIONAL * CHK *
* TYP * LENGTH * TYP * I D * * INFO * SUM *
* 04H * * * * * * *
* * * * * 4 * *
*******t**i’**************************k*****t**/\/\/******tk‘k*

This Record is the last record in an object module. It identifies
main programs and gives their starting address.

MODULE TYPE (MOD TYP)

This byte has value 0 or 1. 1 designates the Module as a main
program; 0 designates the Module as not a main program.

SEG ID and OFFSET

If the Module is a main program, then these two fields specify the
Module's start address. Otherwise, these two fields have no
significance (but must be present and should contain zeros).

OPTIONAL information

This field is not used by the LIB, LINK or LOCATE programs at this
time. This field may be omitted from the Record, at the discretion
of the translator.

This field is reserved for use by future Intel software. Any usage
of this field by other than Intel software may not be compatible
with current or future Intel products.

8080 Object Module Formats page 9

NAMED COMMON DEFINITIONS RECORD

****************************/\/\/**********
* * * *

* *
* REC * RECORD * SEG * COMMON * CHK *
* TYP * LENGTH * I D * NAME * SUM *
* J2FH * * * * *
* * * * * *
* *

***************************/\/\/*********
! !
+====REPEATED-=---~ +

Zero or more of these Records may follow the Module Header Record.

This Record provides the vehicle by which a translator may declare
(FORTRAN) Named Common Blocks.

A Named Common Block 1is a contiguous area of memory that can be
referenced by one or more modules. This Record declares one or more
Common Names. Each Name is defined by a pair of fields.

SEG ID

This field gives the number used to identify the Named Common Block
in this module. For each distinct Name used, the translator must
assign a unique SEG ID number. This number must be less than 255,
and greater than the largest number assigned for non-Common segments
(currently 5). Preferred practice is to start with 254 and work
downwards as required.

COMMON NAME

This field gives the Name of the Named Common Block. The same
Common Name may not appear more than once within the same Module.

page 10 8080 Object Module Formats

EXTERNAL NAMES RECORD

**********************/\/\/****************

* * * *\ /% *
* REC * RECORD * EXTERNAL * \ / * CHK *
* TYP * LENGTH * NAME * X * SUM *
*]8H * * * s\ * *
* * * * * *
* *

********************k/\/\/***************

! !
+-=~-REPEATED~~--- +

This Record provides a (possibly partial) list of External Names.

An External Name is a symbolic reference to a memory location, where
the location is defined in some other Module. This Record declares
one or more External Names. Each Name 1is defined by a pair of
fields:

EXTERNAL NAME

This field gives a Name, to which the Module (probably) makes one or
more references (see External References Record). The same External
Name may not appear more than once within the Module.

Inclusion of a Name in an External Names Record is an implicit
request that the Module be linked to a module containing the same
Name declared as a Public Name. This request occurs whether or not
the Name 1is actually referenced within the Module, by an External
References Record (see below).

"X" FIELD

This field is reserved for use by future Intel software, it must
contain a zero.

External Names Dictionarv:

The ordering of External Names Records within a Module, together
with the ordering of External Names within each External Names
Record, 1induces an ordering on the set of all External Names
requested by the Module. Thus, the External Names are considered to
be numbered: o, 1, 2, 3, ... These numbers are used in External
Reference Records to indicate External Names.

8080 Object Module Formats page 11

PUBLIC DECLARATIONS RECORD

/\/\/*************

* * * * * *\ /x* *
* REC * RECORD * SEG * OFFSET * PUBLIC * \ / * CHK *
* TYP * LENGTH * I D* * NAME * X * SUM *
*]16H * * * * * 7\ *
* * * * * .k \ * *
AR AR KRR RRRIRE AR RN R AR AR RRRRRRR KRR\ /\ SRR hhhh kR AR A hhhk

This Record declares that certain Names in this Module are "PUBLIC",
i.e., other modules are allowed to make references to the (final)
memory location assigned to these Names by making symbolic
references to the Names. (These references to a Public Name are
made by use of the External Names Records and the External
References Records.,)

This Record declares one or more Public Names. Each Name is defined
by a trio of fields.

SEG ID

This field identifies a Segment by giving its identifying number.
All Public Names declared in this record belong to this Segment.

OFFSET

This field defines the location of the Public Name, with respect to
the base of the Segment identified by the SEG ID field.

PUBLIC NAME

This fielé gives the Name by which the location may be referred to
from another module. The same Public Name may not appear more than
once within the same Module.

"X" FIELD

This fielé is reserved for use by future Intel software, it must
contain a zero. ,

page 12 8080 Object Module Formats

CONTENT RECORD

LA RR A SRR EE LSRR RS R R R L R TR

* * * * * * *
* REC * RECORD * SEG * OFFSET * DAT * CHK *
* TYP * LENGTH * I D * * * SUM *
* Q6H * * * * * *
* * * * * * *
de JeJ ke de de de e ook dede de de vk de de de vk de v de de e de dk de de de de de gk d d de e d b %k de o de g ok dk ke %

1]
+-RPT-+

This Record provides one or more bytes of contiguous data, from
which a portion of a memory image may be constructed. The data
belongs to the specified Segment, and is subject to modification by

"Fixup Records" which follow, if any. (Fixup Records are described
below.)

SEG ID

This field identifies a Segment by giving its identifying numter.
The contiguous data defined by this Record belongs to this Segment.

Specification of the Stack Segment in a Content Record is forbidden;
results of programs processing such a record are undefined.

OFFSET

This fiela specifies the lccation of the first data byte, with
respect to the Segment specified by the SEG ID field.

DAT

Following the OFFSET are one or more data bytes. If n is the number
of data bytes, then OFFSET+n must be less than the LENGTH specified
for the "owning" Segment in the Module Header Recorc. (This
requirement does not hold for the Absolute Segment.)

Thus, this Record provides n consecutive bytes of a memcry Lmage,
from BASE+QOFFSET through BASE+OFFSET+n-l, 1nclu51ve, where "BASE" is
the location of the base of the current Segment. It is illegal for
BASE+OFFSET+n-l<: BASE+OFFSET (wrap around 64K), results of programs
processing such a record are undefined.

8080 Object Module Formats page 13

RELOCATION RECORD

khhhdhhkhhhdhdhhkhdhddhhdhddddddidddhihkidkikkkikikkk

* * * * * *
* REC * RECORD * LO * OQFFSET * CHK *
* TYP * LENGTH * HI * * SUM *
* 22H * * BOTH* * *
* * * * * *
3y T T T T Y

! !
+-=-REPEATED-+

2ero or more of these Records may be used to indicate which bytes in
the preceding Content Record <contain references to 1locations
relative to the base of the "“owning" Segment, and whici. must
therefore be modified dependent upon the Segment's final location in
memory. This Record identifies one or more of these references,

LO HI BOTH

This field indicates what Xind of references in the preceding
Content Record are selected by this Record. This byte must have
value 1, 2 or 3, corresponding to LO, HI or BOTH:

l indicates that the references are to the low-order byte of a
memory address.

2 indicates that the references are to the high-order byte of a
memory address.

3 indicates that the references are to both bytes of a memory
address. In this case, the OFFSET (see below) refers to the
low-order byte of the address, and the high-order byte follows the
low=-order byte. Note that both bytes being "fixed up" must be
present in the preceding Content Record.

OFFSET

This field denotes the location of the reference to be "fixed up",
by giving its address as an offset from the base of the "owning"

Segment. This offset must specify a data byte within the previous
Content Record.

page 14 8080 Object Module Formats

INTER-SEGMENT REFERENCES RECORD

ddekkdddkddddkd kA ddddd ko dkdkdkododkkcdkdk ok okodkokdkdokkkkkk

* * * * * * *
* REC * RECORD * SEG * LO * OFFSET * CHK *
* TYp * LENGTH * I D * HI * * SUM *
* 24N * * * BOTH* * *
* * * * x * *
J¢ e Je Je dp de Je ok de de ok de de ok Je A de Je e de A Je e e de sk e de e ok ok ok ek e % de ok ok de e ok ok ke ok ok ke ke

{ !
+--REPEATED-+

Zero or more of these Records may be used to indicate which bytes in
the preceding Content Record contain references to locations in some
other Segment. This Record identifies one or more of these
references. ‘

SEG ID

This field identifies the segment, which the preceding Cohtent
Record makes references to, by giving its identifying number. This
field may not identify the Absolute Segment.

LO HI BOTH

This field indicates what kind of references in the preceding
Content Record are selected by this Record. This byte must have
value 1, 2 or 3, corresponding to LO, HI or BOTH:

1l indicates that the references are to the low-order byte of a
memory address.

2 indicates that the references are to the high-order byte of a
memory address.

3 indicates that the references are to both bytes of a memory
address. In this case, the OFFSET (see below) refers to the
low-order byte of the address, and the high-order byte follows the
low~order byte. Note that both bytes being "fixed up" must be
present in the preceding Content Recorgd.

OFFSET

This field denotes the location of the reference to be "fixed up",
by giving its address as an offset from the base of the "owning"
Segment. This offset must specify a data byte within the previous
Content Record.

8080 Object Module Formats page 15

EXTERNAL REFERENCES RECORD

khkhhkhhkhkhkhhhkkhhhkkhhhhkhhkhkhhkhhkkhkhkhkhkhkhkkhkkhkkhkhkkhkkhkkkkkkkkk

* * * * * * *
* REC * RECORD * LO * EXTERNAL * OFFSET * CHK *
* TYpP * LENGTH * HI * NAME * * SUM *
* 20H * * BOTH* INDEX * * *
* * * * * * *
R e e e S S e S R Rt

Zero or more of these Records may be used to indicate which bytes in
the preceding Content Record contain references to locations in
other Modules. These locations are identified by sequences of
characters called "Names"; these Names must be previously defined in
an External Names Record. This Record identifies one or more of
these references.

LO HI BOTH

This field indicates what kind of references in the preceding
Content Record are selected by this Record. This byte must have
value 1, 2 or 3, corresponding to LO, HI or BOTH:

1 indicates that the references are to the low-order byte of a
memory address.

2 indicates that the references are to the high-order byte of a
memory address.

3 indicates that the references are to both bytes of a memory
address. In this case, the OFFSET (see below) refers to the
low=-order byte of the address, and the high-order byte follows the
low-order byte. Note that both bytes being "fixed up" must be
present in the preceding Content Record.

Each reference is defined by a pair of fields:
EXTERNAL NAME INDEX

This number identifies a Name by giving its index in the External
Names Dictionary, which is implicitly defined by the External Names
Records within the Module (see External Names Record, above). It is
required that the definition of an External Name (in some External
Names Record) precede the occurrence of an EXTERNAL NAME INDEX field
that refers to it.

OFFSET

This field denotes the location of the reference to be "fixed up",
by giving its address as an offset from the base of the "owning"
Segment., This offset must specify a data byte within the previous
Content Record,

page 16 8080 Object Module Formats

MODULE ANCESTOR RECORD

**********************/\/\/**********
* *

*

* REC * RECORD * MODULE * CHK
* TYP * LENGTH * NAME * SUM
* 10H * * *

* * * *

*

*
*
*
*
*********************/\/\/**********

This Record, if present, provides the identity of the ultimate
progenitor Module for a&ll 1line numbers and/or 1local symbols

encountered in the following Line Numbers Records and/or Local
Symbols Records.

The Module Header Record, in addition to its normal functions, also
serves as a Module Ancestor Record. This defines the method whereby

a line number and/or local symbol may be associated with the name of
its original containing Module.

MODULE NAME

This field gives the Name of the Module in which the following Line
Numbers Records and/or Local Symbols Records have been defined
originally.

8080 Object Module Formats page 17

LOCAL SYMBOLS RECORD

/\/\/**************

* * * * * *\ /* *
* REC * RECORD * SEG * OFFSET * SYMBOL * ‘ / * CHK *
* TYP * LENGTH * I D * * NAME * X * SUM *
*]12H * * * * * \ * *
* * * * * *, \ * *
AAKRRRRRRRRI KRR AR R RRRRRRRRRRRRRRRRRR KRR [\ [\ /R Rk kR kkhhh kR ®

This Record provides the vehicle by which a translator may pass to a
debugger program information about symbols (i.e., Names) that were
used in the source language input to the translator that produced
the Module. It is intended that this information may be useful to
ICE or other debugger programs.

This information is processed, but not used, by LIB, LINK or LOCATE.

The symbols in the Record are deemed to have been originally defined
in a source Mocdule of Name given by the most recently preceding
Module Ancestor Record (or, if none, by the Module named by the
Module Header Record).

This Record declares one or more symbols. Each symbol is defined by
a trio of fields.

SEG ID

This field identifies a Segment by giving its identifying number.
All Symbols defined in this Record belong to this Segment.

OFFSET

This field defines the location of the symbol within the Segment
identified in the SEG ID field.

SYMBOL NAME

This is the symbol (Name, Identifier, label, etc.) used in the
source language.

"X" FIELD

This field is reserved for use by future Intel software, it must
contain a zero.

page 18 8080 Cbject Module Formats

LINE NUMBERS RECORD

LA R RS RE SRR R AR R R R RS R R R R RS TR SRR

* * * * * * *
* REC * RECORD * SEG * OFFSET * LINE * CHK *
* TYP * LENGTH * I D * * NUMBER * SUM *
* OBB * * * * * 4
* * * * * x *
KRRk KXR XXk kXX KAk kXX kX hkhkhhkhhkkhkhkhkhkhkhkhkhkkhhkhkkrhhkhkhhhkhkkhk

This Record provides the vehicle by which a translator may pass to a
debugger program the correspondence between a line number in source
code and the corresponding object code. It is intended that this
information may be useful to ICE or other debugger programs.
Normally only the source lines for which executable object code was
generated need to be identified.

This information is processed, but not used, by LIB, LINK or LOCATE.

The lines identified in the Record are deemed to have been
originally defined in a source Module of Name given by the most
recently preceding Module Ancestor Record (or, if none, by the
Module named by the Module Header Record).

This Record declares one or more line numbers. Each line number is
defined by a trio of fields.

SEG ID

This field identifies a Segment by giving its identifying number.
All line numbers defined in this Record belong to this Segment.

OFFSET

This offset cdefines the location within the Segment where the object
code for the corresponding source line begins.

LINE NUMBER

The 2 bytes provide, in binary, a line number between 0 and 65535,
inclusive.

8080 Object Module Formats page 19

END OF FILE RECORD

2222 22222222222 22222222 2
* * * *
* REC * RECORD * CHK *
* TYP * LENGTH * SUM *
*
*
*

OEH * (0001H) *(FlH)*
* * *

el deded dde de de ok e e ek dkde de e ok e e de ok

This Record indicates the end of file on a physical medium. Tc aid
media transparency, it is required on all files.

page 20 8080 Object Module Formats

LIBRARY HEADER RECORD

LA A SRR SRR RSS2 R TR RS RXSRRYTLRPEER SRR SRR RRSSR R 2R R R J

* * * * * * *
* REC * RECORD * MODULE * BLOCK * BYTE * CHK *
* RYP * LENGTH * COUNT * NUMBER * NUMBER * SUM *
* 2CH * (0007H) * * * * *
* * * * * * *
% e de de de de b e dk ke dk ok e e v v s ok e e e e ok de e e dk de Jr J ok e e e e e de e dk dk de dr d de e b e e e e ek kA e ek e ok

This Record is the first record in a library file. It immediately
precedes the modules (if any) in the library. Follcwing the modules
(if any) are 3 more records (described on the following pages) 1in
orcder: Library Module Names Record, Library Module Locations
Record, and Library Dictionary Record.

MODULE COUNT

This field indicates how many modules are in the library. It may
have any value from 0 to 65535, inclusive.

BLOCK NUMBER, BYTE NUMBER

These fields indicate the relative location of the first byte cf the
Library Module Names Record in the library file.

8080 Object Module Formats page 21

LIBRARY MODULE NAMES RECORD

******************k***/\/\/**********
* * * * *
* REC * RECORD * MODULE * CHK *
* TYP * LENGTH * NAME * SUM *
* 28H * * * *
* * * * *
**********************/\/\/**********
! !
+--REPEATED-+

This Record gives the names of all the modules in the library. The
order of the names correspond to the order of! the modules within the

library. Only one Library Module Names Record may appear in the
library.

MODULE NAME

The i'th MODULE NAME field in the Record contains the module name of
the i'th module in the library.

page 22 : 8080 Object Module Formats

LIBRARY MODULE LOCATIONS RECORD

Rkkkkhhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkkhkhkhkhkhrhkkhhkhkhkkkkkkhkkkkrk

* * * * * *
* REC * RECORD * BLOCK * BYTE * CHR *
* TYP * LENGTH * NUMBER * NUMBER * SUM *
* JgH * * * * *
* * * * * *
LR R T T L R PR T T

This Record provides the relative location, within the library file,
of the first byte of (the Module Header Record of) each module.
Only one Library Module Locations Record may appear in the library.

The order of the block-number/byte-number pairs corresponds to the
order of the modules within the library.

BLOCK NUMBER, BYTE NUMBER
The i'th pair of fields provides the relative location within the

library file of the first byte of the first record of the 1i'th
module within the librarvy.

8080 Object Module Formats page 23

LIBRARY DICTIONARY RECORD

********************.**/\/\/***************k

* * * * *

* REC * RECORD * PUBLIC * * CHK *

* TYP * LENGTH * NAME * * SUM *

* 2AH * * * QQH * *

* * * * * *

**********************W'****************
! ! !
+-~-REPEATED-+ !
+=-=-REPEATED----- +

This Record gives all the names of public symbols within the modules

in the library. Only one Library Dictionary Record may appear in
the library.

Since a name must have a non-zero length, the '00' bytes in the
format are distinguishable from the PUBLIC NAME fields. Thus, the
'00' bytes separate the public names into groups; all names in the
i'th group are defined in the i'th module of the library.

PUBLIC NAME

This is the name of a Public symbol in the module. No Public symbol
may appear more than once in this Record.

page 24 8080 Object Module Formats

PRCPER ORDER OF RECORDS

An Object Module or a Library is defineé by a sequence of Records.
Th2 followizg syntax shows what orderings of Records are valid, and
th: following semantics give important information that is conveyed
by the sequence, rather than mere content, of records. Definition
of a wvalid string of Records is given by the following syntax:
(Note: <ITEM >+ means the<l!ITEM >can occur one or mcre times,LITEMD*
mezns the < ITEM >can occur zero or more times.)

£ VALID INPUTY ::= <MODULE?> + <EOF RECORD>

! < LIB HEADER RECORD > <MODULE> *< LIB TAIL> {EOF RECORD;
<MODULE® : :=V< MOD HDR> <(COMPONENT > * ({ MODULE END RECORD >

(MOD HDR?> ::= <MODULE HEADER RECORD > <NAMED COMMON DEFINITIONS RECORD

& COMPONENT » ¢ := LEXTERNAL NAMES RECORD >

! <& PUBLIC DECLARATIONS RECORD >
! < CONTENT DEFINITION >

1

< DEBUG RECORDS >
& CONTENT DEFINITION®> ::= LCONTENT RECORD®> <FIXUP RECORDS> *

< FIXUP RECORDS» ::= < RELOCATION RECORD >
! &INTER-SEGMENT REFERENCES RECORD >
! << EXTERNAL REFERENCES RECORD ¥
< DEBUG RECORDS™> ::= ¢MODULE ANCESTOR RECORD >
! <&LOCAL SYMBOLS RECORD »
! L LINE NUMBERS RECORD >

< LIB TAIL > ::= < LIB MODULE NAMES RECORD> < LIB MODULE LOCATIONS RECORD ™
< LIB DICTIONARY RECORD >

8080 Object Module Formats page 25

The following semantics obtain:

1. All Named Common Definitions Records must follow
immediately after the Module Header Record.

2. A Fixup Record always refers to the previous Content Record.

3. A Line Numbers Record, or a Local Symbols Record, is deemed
to have originated in a Module named by the immediately preceding
Module Ancestor Record, if any, otherwise in the Module itself
(i.e., the Module named by the Module Header Record).

4. All External Names Records must precede all Fixup Records
that refer to them.

page 25

APPENDIX:

8080 Object Module Formats

RECORD FORMATS for HANDY REFERENCE

MODULE HEADER RECORD

t*********************/\/\/**************k**************************k****

x *
* REC *
* TYp *
* 02H *
X

*

*********************/?AV/

thkkhkhkkkkkkhhk

MODULE END RECORD

RECORD
LENGTH

*
*
*
*

®

MODULE
NAME

\ /\
* \ /7 x N\,
* X * X
* /N * N\
*y */

/%
*
*
*
*

*

SEG *
I D~

*
*

*

SEGMENT *

LENGTH *

x
*

*

k]
ALN * CHK *
TYP * SUM *

* *
* *
*

fhkkhkhkdhkkkdhkhhkkhkrkrhkkrhehkkx

/\/\/********

* * * * * *
* REC * RECORD * MOD * SEG * OQOFFSET * OPTIONAL * CHK *
* TYP * LENGTH * TYP * I D * * INFO * SUM *
* 04H * * * * * * *
* * * * * * * *
HERI KK ARRKRRRRKIARA IR KRR RRRRARR I AR R RRKARARIE /\ [\ /rkrhkkkhh*

8080 Object Module Formats

NAMED COMMON DEFINITIONS RECORD

****************************/\/\/**********

* * * *
* REC * RECORD * SEG * COMMON * CHK *
* TYP * LENGTH * I D * NAME * SUM *
* JEH * * * * *
* * * * * *
****************************/\/\/**********

+====REPEATED-~=-~~ +

EXTERNAL NAMES RECORD

**********************/\/\/****************
* * * /* *

*
* REC * RECOCRD * EXTERNAL * \ / * CHK *
* TYp * LENGTH * NAME * X * SUM *
* 18H * * * ,\ = *
* * * * * *
*

*********************/\/\/****************
|

+~=--REPEATED-~=-- +

PUBLIC DECLARATIONS RECORD

/\/\/**********k***

* * * * * *\ /%

* REC * RECORD * SEG * OFFSET * PUBLIC * \ / * CHX
* TYP * LENGTH * I D * * NAME * X *

* 16H * * * * * ,\ *

* * * * * *x/ A\ *

*

***************************************/\J\/***************

!

*
*
*
*
*
*

page 27

page 28

CONTENT RECORD

8080 Object Module Formats

hhkhhkhkhhkhkhhhhhhhkhhhhhhkhhhhkhkhkhkhkhkhkhhdhhrhkhkhkhhkihhhinr

*

*

* REC *
* TYP *
* 06H *
* *
*

RECORD
LENGTH

*
*

*
*

*

SEG *
I D~

*
*

OFFSET

*
*
*
*
*

*

DAT * CHK

* SUM
*

*

*
*
*
*
*

AR S XSRS 22X RE R RERERRRZSS RS2 REZESR RS R R R R R

RELOCATION RECORD

!

+-RPT-+

hkkkkkhkhkhkhkhkhkkhkrhkhkdhkkdkkhdhikhkhikihkkihhrkixk

*

*

* REC *
* TYP *
* 224 *
* *
*

RECORD
LENGTH

*
*
*
*
*

*
Lo *
“HI *
BOTH*
*

QFFSET

*
*
*
*
*

*
CHK *
SUM *
*
*
*

J e de Je e de dk d dk d Jk e de ke de de de de ke de ok e e de dk e ok ok ko de e de ok e ok de ok ok ke

+--REPEATED~+

INTER-SEGMENT REFERENCES RECORD

LA RS EERREEERSZERR2 RN R R RS RERR SRR RRRRERE D

* *
* REC *
* TYP *
* 24H *
* *
*

(AR R RS RRXRRRRRSRXRR R RRR2RRR R RS SRR R

EXTERNAL REFERENCES RECORD

RECORD
LENGTH

*
*

*
*

.k
SEG *
ID*
*
*

*
L =
HI ~*
BOTH*

*

*

OFFSET * CHK

* SUM

*
*

+--REPEATED-+

*
*
*
*
*
*

LA S ZE RS RRRXSEERSRZRSRSSRRRRS XS R RS RS R R RRRRR R 2R RS

*

*
* REC *
* TYPp *
* 20H *
* *
*

RECORD
LENGTH

*
*

*
*
*

LC * EXTERNAL

*
HI *
BOTH*
*

NAME
INDEX

*
*
*

*
*

OFFSET

*
*
*

*
*

CHK
SUM

*
*
*
X
*

LA A SRS R EEEERERRERRRRRRRERRERRXRRRRRR2R R RRRRRER R 2B

8080 Object Module Formats page 29

MODULE ANCESTOR RECORD

**********************/\/\/**********
*

REC * RECORD MODULE * CHK

* *
* * *
* TYP * LENGTH * NAME * SUM *
* J0H * * * *
* * * * *
**********************/\/\/**********

LOCAL SYMBOLS RECORD

/\/\/**************

* * * * * * 7 [* *
* REC * RECORD * SEG * OFFSET * SYMBOL * \ / * CHK *
* TYP * LENGTH * I D * * NAME * ¥ % QUM *
* 12H * * * * x s\ * *
* * * * * * \ * *
* *

k**************************************/\/\/***************

LINE NUMBERS RECORD

kRhkhkhkhkhkdkhkhkkhkhkhkkkhkhhhkhkhkkhkkhkhhkkkkhkhkkhkhhkhkkkkhkkhkkhkhkhkhkkhkkk

* * * * * * *
* REC * RECORD * SEG * OFFSET * LINE * CHK *
* TYP * LENGTH * I D * * NUMBER * SUM *
* QBH * * * * * *

2 XS 2222222222222 22222222222 2222222222 222222222t R R 8 R

page 30 8080 Object Module Formats

END OF FILE RECORD

RkRXRR kR kAR Xk kR kRrhRh Xk
* ' * *

REC * RECORD * CHK *
TYP * LENGTH * SUM *

*
*
*
* QEH * (000lH) *(FlH)*
* * * *
*

de e e dr ke ke e ok ok ek de ok de ok de d e de de ke e de e

8080 Object Module Formats

LIBRARY HEADER RECORD

khkkkkhkhAhkhkkkkkkkhkkkhkhkkkhkhhhhkkhkhkhkhkhkhkhkhkhkhkhhkkhkhkhkhhkhkhkhkhkkkkkkk

* * * * * * *
* REC * RECORD * MODULE * BLOCK * BYTE * CHK *
* TYP * LENGTH * COUNT * NUMBER * NUMBER * SUM *
* 2CH * (0007H) * * * * *
* * * * * * *
ARk R R R R KRR KRR KRR R KRR KRR AR KRR KRR KRR Rk ARk kR ke khkkhhkk

LIBRARY MODULE NAMES RECORD

*********************/\/\/**********
*x

* * *
* REC * RECORD * MODULE * CHK *
* TYP * LENGTH * NAME * SUM *
* 28H * * * *
* * * * *
*

********************/\/\/**********

+==-REPEATED-+

!

LIBRARY MODULE LOCATIONS RECORD

kkkhkhkkhkkhkhkkhkhhkhkhkkkhkhhhkhkhkhkhhhkhkkhkhkhkhkhhkkkhkhkkhkkhkkk

* * * * * *
* REC * RECORD * BLOCK * BYTE * CHK *
* TYPp * LENGTH * NUMBER * NUMBER * SUM *
* 2G6H * * * * *
* * * * * *
ARk AR AR R R KRR KRR AR AR R AR AR AR AR R AR AR R ARk AR R kAR AR

LIBRARY DICTIONARY RECORD

**********************/\/\/***************k

*

*

* REC *
* TYp *
* 2AH *
* *
*

RECORD
LENGTH

*
*
*

*
*

PUBLIC
NAME

*
*

* 00H
*

*

* CHK
* SUM

*
*

*
*
*
*
*

**********t**********/\/\/****************

+--REPEATED-+

+====REPEATED-~-~

page 31

page 32

8080 Object Module Formats

APPENDIX: SEGMENT COMBINATION

When two or more modules are linked together by LINK, "like"
segments are "combined" into a single segment for the output module;
e.g., all the Code Segments are "“combined" into a single Code
Segment. The nature of *“combining®™ depends on the segment,
sometimes two segments being "combined" are concatenated, ang
sometimes only the lengths of the two segments are used to define a
new "combined" segment.

A module may contain different segments (see section entitled
Segmentation of Programs above). Each segment may have one of three
alignment types: In-page relocatable (IP), Page relocatable (PR},
and Byte relocatable (BR). Each segment's alignment type |is
specified in its Module Header Record (described above). These
alignment types specify the way segments are placed in memory for
execution.

The 8080 memorv 1is often considered as being partitioned into
"pages", where a page is 256 contiguous bytes (and the high order
byte of the memory address of each byte is the same). This concept
gains utility from the fact that two 8080 registers, e.g. H and L,
are used to specify a memory address. If a value is put into E,
then 256 different (and contiguous) bytes may be specified by the
256 possible different values placed in the L register. ‘These bytes
are said to form a "page". A "page boundary"™ is the first byte of a
"page" (i.e., the low order byte of the memory address is zero).

A segment with alignment type IP must be of length 256 bytes or
less, and it mnust be located within a single page, anywhere in
memory; i.e., it must not cross a page boundary. Such segments will
typically be referenced by first setting H, and thereafter modifying
only L.

A segment with alignment type PR must be located such that the first
byte of the segment is at a page boundary, anywhere in memory. Such
segments are typically referenced by other segments in a method
whereby the content of the HL register pair is made to point into
the segment; and thereafter H and L are independently manipulated to
reference other sections of the segment. Observe that it |is
frequently possible to change L, without changing H, because E
selects the page, and L selects the byte within the page. Less
frequently, H will be independently changed.

A segment with alignment type BR may be located anywhere in memory.

When two segments are “"combined", the alignment types of each
segment must be preserved in the resultant combined segment;
furthermore the resultant alignment type must guarantee that any
future 1linkage operations on the segment will not violate the
original alignment types of its constituent sub-segments.

8080 Object Module Formats page 33

COMBINING TWO ABSOLUTE SEGMENTS

Combination of two Absolute Segments is analogous to the union of
two sets, where each byte in an Absolute Segment is analogous to a
set element, However, if the same byte is defined in each Absolute
Segment being combined, it will be defined twice in the resultant
Absolute Segment., This causes an error message to be generated by
LINK and LOCATE.

COMBINING TWO CODE SEGMENTS

Let S1 and S2 be Code Segments that are to be combined to form a
single Code Segment S3. Let L1 and L2 be the 1lengths of the
segments, respectively, as specified in their Module Header
Records. Define Llp as the smallest multiple of 256 that is greater
than or equal to Ll. The following table indicates the alignment
type and length of S3, as a function of the alignment types and
lengths of S1 and S2.

S2
IpP PR BR
e L T e DL L e ettt +
! L1 + L2 ! ! b
! (IP) ! Llp+ L2 ! L1 + L2 !
IP ! or ! ! !
! Llp + L2 ! (PR) ! (PR) !
! (PR) ! ! 1
e ————— b B et L LT +
! ! ! !
! L1 + L2 ! Llp+ L2 ! L1 + L2 !
S1 PR ! or ! ! !
! Llp + L2 ! (PR) ! (PR) !
! {PR) ! ! !
e LT et e — +
! ! ! !
‘ !' L1 + L2 ! Llp+ L2 ! L1 + L2 !
BR ! or ! ! !
! Llp + L2 ! ({PR) ! (BR) !
! {PR) ! ! !
e et T ettt L B L e T +

When two In-page relocatable (IP) Code Segments are combined, the
resultant Code Segment is In-page relocatable (IP) if L1 + L2 4 256;
otherwise the resultant Code Segment is Page relocatable (PR).

When S2 is In-page relocatable (IP) and Sl is not, the length of S3
will be L1 + L2 if Llp - L12L2; otherwise the length of S3 will be
Llp + L2.

page 34 8080 Object Module Formats

Combination of two Code Segments is in general not commutative with
respect to the layout of memory or the length of the combinec-
segment, For example, the length of combining S1 with S$S2 may be
different frcm combining S2 with Sl.

When the size of the resultant Code Segment is Llp + L2, and

Llp >Ll, then the spaces between S1 and S2 are permanently lost.
These areas represent a "gap" in the Code Segment. These gaps, when
formed, are repcrted in the map produced by LINK.

COMBINING TWO DATA SEGMENTS

Data Segments are combined in exactly the same manner as Code
Segments, as described in the preceding section.

COMBINING TWO STACK SEGMENTS

The length of the Stack Segment given in the Module Header Record is

the minimum stack size required for successful execution of the
Module,

The length of the combined Stack Segment is the sum of the lengths
of the two Stack Segments being combined. If both Stack segments
are Byte relocatable (BR), then the resultant Stack Segment will be
Byte relocatable (BR); otherwise the resultant Stack Segment is Page
relocatable (PR).

COMBINING TWO MEMORY SEGMENTS

The length of the Memory Segment given in the Module Header Record
is the minimum number of bytes in this segment required by the
Module.

The length of the combined Memory Segment is the larger length of
the two Memory Segments being combined., If both Memory Segments are
Byte relocatable (BR), then the resultant Memory Segment will be
Byte relocatable (BR); otherwise the resultant Memory Segment will
be Page relocatable (PR).

COMBINING TWO NAMED COMMON SEGMENTS

Named Common Segments are different from other segments in thet they
do not have pre-defined segment numbers. In fact, two Named Common
Segments will be selected for combination not by the equality of
their segment number, but by the equality of their Names as defined
in the Named Common Definitions Record.

The lengths of the two Named Common Segments being combined must be
the same; otherwise a warning message is generated. The length of
the combined Named Common Segment is the larger length of the two
Named Common Segments being combined (if the 1lengths are
different). If both Named Common Segments are Byte relocatatle
(BR), then the resultant Named Common Segment will be Byte
relocatable (BR); otherwise the resultant Named Common Segment will
be Page relocatable (PR).

8080 Object Module Formats page 35

COMBINING TWO UNNAMED COMMON SEGMENTS

The length of the combined Unnamed Common Segment is the larger
length of the two Unnamed Common Segments being combined. If both
Unnamed Common Segments are Byte relocatable (BR), then the
resultant Unnamed Common Segment will be Byte relocatable (BR);

otherwise the resultant Unnamed Common Segment will be Page
relocatable (PR).

page 36

8080 Object Module Formats

APPENDIX: SEGMENT LOCATING

The LOCATE program will allow the user to assign absolute memory
addresses to the different segments in an object module. This can
be done using either user defined bases and orders or default bases
and orders (see the ISIS-II USER'S GUIDE for more information on the
LOCATE program). Default ordering will lead to the following memory
organization:

hlgh address khkkkdkkdkdkhkdhhhdhhdhddhdhihkhii <_, MEMCK
* *
* MEMORY Segment *
* *
*base *
de de de e ke de ve de v de de ok de de e de de de de de ok ok ok kK Kk
* *
* DATA Segment *
* *
*base *
Je dede de de ok de e de de de dode de ke dk ok ok dkkkkokk Rk
* *
* NAMED/UNNAMED COMMON *
* Segments (if any) *
*base *
kkkkkhkhhikhkhhkhkdkhhdkhhhkkhkhhkd
* base*
* STACK Segment *
* *
kkkkkkhkdkhkhkhhhkdhkhkhkkkdkhkhih
* *
* CODE Segment *
% *
*hase *
low address khkhkkkkhkhhkkhkkdxhrhkhhkhkkx

This crganization allows the Data Segment to grow dynamically into
the unused memory space. By judicious choice of labels and the use
of the MDS MONITOR function MEMCX, the user can programmatically
determine the lengths of all Segments.

The length of the Memory Segment is always computed to be the amount
of available memory on the system the module is LOCATEd. If the
module is executed on the same system, the Memory Segment length
calculated by LOCATE is correct. If the module is executed cn a
different system, the actual amount of memory depends on the
configuration of that system. LOCATE has no knowledge c¢i the
configuration of the target system.

8080 Object Module Formats page 37

Note that all segments grow upward from their base except for the
Stack Segment, which grows downward due to hardware design.

LOCATE will resolve references to the MEMORY and STACK bases.
Translators will issue Inter-Segment References Records for tne
respective reserved words that reference these bases.

The base of the Absolute Segment is memory address zero.

	Front page
	Preface
	Contents
	Introduction
	Segmentation of programs
	Record format diagrams
	Common record fields
	02-Module header
	04-Module end
	2E-Named common definitions
	18-External names
	16-Public declarations
	06-Content
	Fixup records
	22-Relocation
	24-Inter-segment references
	20-External references

	Debug records
	10-Module ancestor
	12-Local symbols
	08-Line numbers

	0E-End of file
	Library records
	2C-Library header
	28-Library module names
	26-Library module locations
	2A-Library dictionary

	Proper order of records
	Appendix
	Record formats
	Segment combination
	Segment locating

