
MCS 80/85
RELOCATABLE OBJECT MODULE

FORI-tATS

An Intel Technical Specification

Order Number: 121747-001

Copyright@ 1981 Intel Corporation
Intel Corporation, 3065 aowers Avenue, Santa Clara, California 95051

ii

-\dditional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
J065 Bowers Avenue
Santa Clara. CA 95051

The information in this document is subject to change without notice.

Intel Corporalion makes no warranty of any kind with regard to this material. including. but not limited
to. the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
.::ommitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circnitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use.
duplication or disclosure is subject to restrictions stated in Intel's software license. or as deiined in ASPR
7·104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

8XP (n[eJevision ~ul!ibu.

CREDIT 'nlellec ~ullimodul.

i IR~IX Plug·A-Bubbl.
ICE iSBC PRO~PT
.CS .sBX Promware

'm Linrary \1ana,er R~XnO

In'liC' \\CS S" rem ~(XX)
Intel \I.gach UPI
Intel \Iicromap .ScOl!O

and the combination oi ICE. iCS, iR~1X. iSBC. iSBX. MCS. or RMX and a numerical suffix.

I A33S/381/S00 IP I

PREFACE

This manual defines the internal format of 8080/8085 relocatable
object files produced by Intel's resident or cross product language
translators and read by other Intel software products. The
information in this manual is normally not needed in order to use
Intel software, but is provided for the per son who needs to wr i te
programs to process these object files or to create files in the
same format.

The character set of the Arner ican Standard Code for Information
Interchange (ASCII) is defined in the following document:

American National Standard
Interchange, X3.4-l968.

Institute, Code for Information

The information contained in this document is subject to change
without notice. Intel makes no warranty of any kind with regard to
this material and specifically disclaims all implied warranties
including merchantability and fitness of a particular purpose.
Intel will not be liable for errors contained herein or for
incidental or consequential damages ar ising out of the furnishing,
performance, or use of this material. Intel assumes no
responsibility for the use or reliability of its software when used
on equipment that is not furnished by Intel.

CONTENTS

INTRODUCTION • • • • • • • • •
SEGMENTATION OF PROGRAMS • • • •
RECORD FORMAT D IAGRAHS ••••

COMMON RECORD FIELDS • • • •
MODULE HEADER RECORD • • • •

. · · · ·
MODULE END RECORD ••••••••••• • • •
NAMED CO~~ON DEFINITIONS RECORD • • • • • • • •
EXTERNAL NAMES RECORD ••• • • • • • • • • • • • •
PUBLIC DECLARATIONS RECORD •••••••••••••
CONTENT RECORD •••••••••••••• ••••
FIXUP RECORDS ••••••••••••••••••

RELOCATION RECORD • • • • • • • • • • • • •
INTER-SEGMENT REFERENCES RECORD • •••••••
EXTERNAL REFERENCES RECORD • • • • • •••••

DEBUG RECORDS ••• • • • • • • • •• •• • • •
MODULE ANCESTOR RECORD • • • • • •• •••••
LOCAL SYMBOLS RECORD ••• • • • • •
LINE NUMBERS RECORD ••• •• • • • • • •

END OF FILE RECORD •••••••• •••• • •
LIBRARY RECORDS • • • • • • • • • • • • • • • •• •

LIBRARY HEADER RECORD • • • • • • •
LIBRARY MODULE NAMES RECORD • • •••• • •
LIBRARY MQDULE LOCATIONS RECORD • • • • • • • • • •
LIBRARY DICTIONARY RECORD • • • • • • • •

PROPER ORDER OF RECORDS ••••••• • • • • • • • • •

APPENDIX:
APPENDIX:
APPENDIX:

RECORD FORMATS
SEGMENT COMBINATION
SEGMENT LOCATING

.

1
2
4
5
8
8
9

10
11
12
13
13
14
15
16
16
17
18
19
20
20
21
22
23
24

26
32
36

INTRODUCTION

Execution of computer programs requires that programs be loaded into
memory. Therefore, a method of representing a desired memory state
(memory content, memory image) is required.

This document defines a set of formats that permit specification of
relocatable memory images that may be linked one to another. \\~
assume that "relocation" and "linkage" are primitive concepts that
need not be defined.

The reader may wish to refer to the ISIS-II USER'S GUIDE for
additional information on relocation and linkage.

page 2 8080 Object Module Formats

SEGMENTATION OF PROGRAMS

An obj ect module contains one or more components called Segments.
Except for the Absolute Segment, a Segment defines a contiguous area
of memory. Semantics of Segments are pre-def ined, and vary from
Segment to Segment (see also the Appendix on Segment Combination and
Segment Locating for additional information on the properties of the
different segments). The Segments are identified by numbers:

O. ABSOLUTE SEGMENT.

The Absolute Segment is not actually a segment. However, in the
object module format, several varieties of information must be
preceded by a "Segment 10" that identifies the Segment to which the
information belongs. The number zero is used- to precede similar
information that belongs to no Segment, but is absolute. References
to the Absolute Segment should be understood to refer to the
collection of all such information within a Module, without
implication of contiguity or relocatability of that information.

1. CODE SEGMENT.

The translator puts information into the Code Segment which is
destined for ROM. Such information may be the ~xecutable code
produced by the PL/M compiler; or any information in Assembly
Language following a CSEG directive.

2. DATA SEGMENT.

The semantics of this Segment are the same as those of the Code
Segment, except that the information is destined for RAH.

3. STACK SEGMENT.

This Segment is, at run time, a contiguous area of RM1 that is used
as a run-time stack. Normally translators will not define symbols
or structures in this area, but w ill assume the existence of a
distinguished Name (e.g., STACK in 8080/8085 ASSEMBLY LANGUAGE) for
the highest memory byte of this Segment.

4. MEMORY SEGMENT.

This Segment is, at run time, a contiguous area of RAM located in
high address space (just below the address returned by the MDS
MONITOR function MEMCK). Normally, translators will not define
symbols or structures in this area, but will assume the existence of
a distinguished Name (e.g., MEMORY in PL/lt.) for the lowest memory
byte of this Segment.

8080 Object Module Formats page 3

5 • RESERVED SEGMENT

The Segment identified by the number five is reserved for use by
future Intel software.

254, 253, 252, ••• 6. NAfolED COMMON SEGMEN'rS

Each module may define a mapping between these segment numbers a':1d
FORTRAN Common Names. At link time, LINK will produce an output
mapping that will maintain a unique number for each Common Name
(thus there is a limitation that no more than 249 distinct Common
areas may exist), and will resolve references to each Common area in
the same fashion that references to the unnamed Common are resolved.

255 • UNNAMED COl-mON SroMENT.

This Segment corresponds to FORTR~~'s "blank" Common area. Several
modules may define the size of this Segment; LINK will resolve these
definitions in a single contiguous memory area.

page 4 8080 Object Module Formats

RECORD FORMAT OIAGRAHS

The record format diagrams use the following conventions:

******* ************* ****/\/\/****
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
******* ************* ****/\1\/****

(A) (B) (C)

(A) represents a single-byte f ield ~ (B) represents a
that specifies a l6-bit value (8080 standard, i.e.,
first byte contains the low-order hal~ of the
represents a field of a variable number of bytes.

two-byte field
low-order, or
number) ; (C)

Some records contain a field or series
repeated. Such portions are indicated by
brackets in the diagrams.

of fields that may be
the "REPEATED" or "RPT"

Any field that indicates a "Name" has the following internal
structure: the first byte contains a number between 1 and 255,
inclusive, which indicates the number of remaining bytes in the
field. These remalnlng bytes are interpreted as a byte str ing.
Most translators will choose to constrain the values of these
remaining bytes to ASCII codes of printable characters, but nothing
in this specification requires such constraint.

A field marked "OFFSET" specifees a value in conjunction with
another pi ece of information, a Segment 10. iPH:never a SEG IO field
immedia tely precedes an OFFSET field, it determines the SEG~~ENT for
which the OFFSET field gives an offset. If a SEG ID field does not
immedia tely precede the OFFSET field, (which occurs only in Fixup
Records), then that offset is with respect to the SEG ID field in
the previous Content Record.

An~7 field that indicates an "OFFSE'r"represents a value that is
determined by adding the value in the offset field to the value of
the base of the designated Segment.

Any field with an "X" through it contains unspecified information
and is to be ignored (but the field must be present where
indicated) • These fields are reserved for use by future Intel
software. They must contain zeros, any value other than zero may
not be compatible with current or future Intel products.

8080 Object Module Formats page 5

COMMON RECORD FIELDS

All record formats share this common organization: (1) The first
byte is a field that contains a number that identifies which kind of
record the record is. This is the RECORD TYPE (REC TYP) field. (2)
The next two bytes are afield that contains a number called the
RECORD LENGTH. It is the total number of bytes in the record,
exclus ive of the three bytes that compr ise the RECORD TYPE and
RECORD LENGTH fields. (3) The last byte in every record is the CHECK
SUM (CHK SUM) field i it contains the two I s complement of the sum
modulo 256 of all other bytes in the record.

The maximum value contained in any RECORD LENGTH field is 1025
(decimal), with the exception of (1) Library Records, and (2)
Content Records that specify the Absolute Segment in their SEG ID
field and have no Fixup Records immediately following.

page 6 8080 Object Module Formats

MODULE HEADER RECORD

**********************/\/\/***
* * * * \ I *\ 1* * * *
* REC * RECORD * MODULE * \ I * \ / * SEG * SEGMENT * ALN * CHK
* TYP * LENGTH * NAME * X * X * I D * LENGTH * TYP * SUlol
* 02H * * * I \ * I \ * * * *
* * * */ \ */ \ * * * *
**********************j\/\/*************************** ********************

! !
+-------REPEATED---------+

This Record is the first record in an object module. It identifies
the Module and defines the segments that are used by the module.

MODULE NMIE

Every Module has a Name. The Module name will be listed in various
summary listings produced by the LIB, LINK and LOCATE programs, and
is a "handle l

' by which the user may aesignate certain Modules to
programs such as LIB and LINK.

A valid module name contains between 1 and 31 characters, inclusive,
each of which must be a capital letter (A, B, ••• , Z), a digit (0,
1, 2, ••• , 9), a question mark (?) or a commercial at sign (@).
Furthermore, the first character of a module name may not be a digit.

nX" FIELDS

These fields are reserved for use by future Intel software, they
must contain zeros.

SEG rD, SEGl>lENT LENGTH and ALIGNl>1ENT TYPE (ALN TYP)

Every Module Header Record contains zero or more of these field
trios. Each trio identifies a Segment by giving its identifying
number, the length (size) in bytes, and the alignment type (also
called the relocation type) of the Segment in the Nodule. No
Segment may appear in more than one such trio; no Segment may appear
in a Module unless its length (or an upper bound on its length) has
been given in the Module Header Record. (Except the Memory Segment,
wh ich, if presen t, provides a lower bound (possibly zero) on its
required length.)

The Absolute Segment is the exception to these rules. Since
absolute information within a Module may be discontiguous, and since
it cannot be "relocated", the nlength" and "alignment type n of such
information have no meaning. Thus, the Absolute Segment may not be
specified in a SEG ID field of a Module Header Record.

8080 Object Module Formats

The ALN TYP field specif ies the type of
applied to a Segment when it is relocated.
one of the following: 1, 2 or 3.

page 7

alignment that must be
This field must contain

1 indicates that the Segment must fit within a single Page when
relocated. A Page of memory is 256 bytes beginning on a Page
boundary (see below). This is also called In-page relocatable.

2 indicates that the Segment must begin on a Page boundary when
relocated. Page boundaries occur in multiples of 256 bytes
beginning with zero (0, 256, 512, etc.) This is also called Page
relocatable.

3 indicates that the Segment may begin on any byte boundary when
relocated. This is alsa called Byte relocatable.

Additional information on these alignment types is found in the
8080/8085 ASSEMBLY LANGUAGE PROGRAMMING MANUAL and the ISIS-II
USER'S GUIDE.

page 8 8080 Object Module Formats

MODULE END RECORD

*************~********************************I\I\I**** ******

* * * * * * * *
* REC *
* TYP *
* 04H *

RECORD
LENGTH

* MOD *
* TYP *
* *

SEG *
I D *

*

OFFSE'r * OPTIONAL
* INFO
*

* CHK *
* SUM *
* *

* * * * * * * *
******* * ** It****** * **** * * * ***** ** *** * * It * **** It ** 1\ /\1* *** * * * It-Jt *

This Record is the last record in an object module.
main programs and gives their starting address.

MODULE TYPE (MOD TYP)

It identifies

This byte has value 0 or 1. 1 designates the Module as a main
program; a designates the Module as not a main program.

SEG ID and OFFSET

If the Module is a main program, then these two fields specify the
Module's start address. Otherwise, these two fields have no
significance (but must be present and should contain zeros).

OPTIONAL information

This field is not used by the LIB, LINK or LOCATE programs at this
time. This field may be omitted from the Recore, at the discretion
of the translator.

This field is reserved for use by future Intel software. Any usage
of this field by other than Intel software may not be compatible
with current or future Intel products.

8080 Object Module Formats

NAMED COMMON DEFINITIONS RECORD

****************************/\/\/**********
* * * * * *
* REC * RECORD * SEG * COMf.'lON * CHK *
* TYP * LENGTH * I D * NAME * SUH *
* 2EH * * * * *
* * * * * *
****************************/\/\/**********

! !
+----REPEATED-----+

page 9

Zero or more of these Records may follow the Module Header Record.
This Record provides the vehicle by which a transla tor may declarE:
(FORTRAN) Named Common Blocks.

A Named Common Block is a contiguous area of memory that can be
referenced by one or more modules. This Record declares one or more
Common Names. Each Name is defined by a pair of fields.

SEG ID

This field gives the number used to identify the Named Common Block
in this module. For each distinct Name used, the translator must
assign a unique SEG ID number. This number must be less than 255,
and greater than the largest number assigned for non-Common segments
(currently 5). Preferred practice is to start wi th 254 and work
downwards as required.

CO~..MON NAt-!E

This field gives the Name of the Named Common Block. The same
Common Name may not appear more than once within the same Module.

page 10 8 08 a Obj ect r·lodule Formats

EX'fERNAL NAMES RECORD

**********************/\/\/****************
* * * *\ 1* *
* REC * RECORD * EXTERNAL * \ / * CHK *
* TYP * LENGTH * NAME * X * SUH *
* ISH * * * / \ * *
* * * */ * *
*********************kl\l\/****************

1 !
+----REPEATED-----+

This Record provides a (possibly partial) list of External Names.

An External Name is a symbolic reference to a memory location, where
the location is defined in some other Module. This Record declares
one or more External Names. Each Name is def ined by a pair of
fields:

EXTERNAL NAHE

This field gives a Name, to which the Module (probably) makes one or
more references (see External References Record). The same External
Name may not appear more than once within the ~odule.

Inclusion of a Name in an External Names Record is an impl ici t
request that the Module be linked to a module containing the S<.1me
Name declared as a Public Name. This request occurs whether or not
the Name is actually referenced within the Hodule, by an External
References Record (see below).

"X" FIELD

This field is reserved for use by future Intel software, it must
contain a zero.

External Names Dictionarv: .

The order ing of External Names Records within a Module, together
with the ordering of External Names within each External Names
Record, induces an ordering on the set of all External Names
requested by the Module. Thus, the External Names are considered to
be numbered: 0, 1, 2, 3, •.• 'l'hese numbers are used in External
Reference Records to indicate External Names.

8080 Object Module Formats page 11

PUBLIC DECLARATIONS RECORD

/\/\/*************
* * * * * *\ /* *
* REC * RECORD * SEG * OFFSET * PUBLIC * \ / * CHK *
* TYP * LENGTH * I D * * NAME * X * SU1-1 *
* 16H * * * * * / \ * *
* * * * * */ * *
/\/\/**~**********

, I . .
+----------REPEATED-----------+

This Record declares that certain Names in this Module are "PUBLIC",
i.e., other modules are allowed to make references to the (final)
memory location assigned to these Names by making symbolic
references to the Names. (These references to a Public Name are
made by use of the External Names Records and the External
References Records.)

This Record declares one or more Public Names. Each Name is defined
by a trio of fields.

SEG ID

This field ioentifies a Segment by giving its identifying number.
All Public Names declared in this record belong to this Segment.

OFFSET

This field defines the location of the Public Name, with respect to
the base of the Segment identified by the SEG ID field.

PUBLIC NM:iE

This field gives the Name by which the location may be referred to
from another module. The same Public Name may not appear more than
once within the same Module.

"X" FIELD

This field is reserved for use by future Intel software, it must
contain a zero.

page 12 8080 Object Module Formats

CONTENT RECORD

-******
* * * * * * *
* REC *
* TYP *
* 06H *
* *

RECORD
LENGTH

* SEG *
* I D *
* *
* *

OFFSET * DAT * CHK *
* * SUM *
*
*

*
*

*
*

!

+-RPT-+

This Record provides one or more bytes of contiguous data, from
which a portion of a memory image may be constructed. The data
belongs to the specified Segment, and is subject to modification by
"Fixup Records" which follow, if any. (Fixup Records are described
below.)

SEG ID

This field iden ti f ies a Segment by g i v ing its ident ifying number.
The contiguous data defined by this Record belongs to this Segment.

Specification of the Stack Segment in a Content Record is forbidden;
results of programs processing such a record are undefined.

OFFSET

This' fiela specifies the lccation of the first data byte, with
respect to the Segment specified by the SEG ID field.

DAT

Following the OFFSET are one or more data bytes. If n is the number
of data bytes, then OFFSET+n must be less than the LENGTH specified
for the "owning" Segment - in the Hodule Header Record. (This
requirement does not hold for the Absolute Segment.)

Thus, this Record provides n consecutive bvtes of a memcry image,
from BASE+OFFSET through BASE+OFFSET+n-l, inclusive, where "BASE" is
the location of the base of the current Segment. It is illegal for
BASE+OFFSET+n-l < BASE+OFFSET (wrap around 64K), results of programs
processing such a record are undefined.

8080 Object Module Formats

RELOCATION RECORD

***k
* * * * * *
* REC
* TYP
* 22H

* RECORD
* LENGTH
*

* LO * OFFSET
* HI *
* BOTH*

* CHK *
* SUlol *
* *

* * * * * *
**

!
+--REPEATED-+

page 13

Zero or more of theie Records may be used to indicate which bytes in
the preceding Content Record. contain references to locations
relative to the base of the "owning" Segment, and which must
therefore be modified dependent upon the Segment's final location in
memory. This Record identifies one or more of these references.

LO HI BOTH

This field indicates what kind of references in the preceding
Content Record are selected by this Record. This byte must have
value 1, 2 or 3, corresponding to LO, HI or BOTH:

1 indicates that the references are to the low-order byte of a
memory address.

2 indicates that the references are to the high-order byte of a
memory address.

3 indicates that the references are to both bytes of a memory
address. In this case, the OFFSET (see below) refers to the
low-order byte of the address, and the high-order byte follows the
low-order byte. Note that both bytes being "f ixed up" must be
present in the preceding Content Record.

OFFSET

This field denotes the location of the reference to be "fixed up",
by giving its address as an offset from the base of the nowning"
Segment. This offset must specify a data byte within the previous
Content Record.

page 14 8080 Object Module Formats

INTER-SEGMENT REFERENCES RECORD

*****************************~*******************
* * * * * * *
,. REC *
* TYP *
* 24H *
* *

RECORD
LENGTH

* SEG * LO * OFFSET
* I D * HI *
* * BOTH*
* * *

* CHK *
* SUM *
* *
* *

+--REPEATED-+

Zero or more of these Records may be used to indicate which bytes in
the preceding Content Record contain references to locations in some
other Segment. This Record identifies one or more of these
references.

SEG ID

This field identifies the segment, which the preceding Content
Record makes references to, by giving its identifying number. This
field may not identify the Absolute Segment.

LO HI BOTH

This field indicates what kind of references in the preceding
Content Record are selected by this Record. This byte must have
value 1, 2 or 3, corresponding to LO, HI or BOTH:

1 indicates that the references are to the low-order byte of a
memory address.

2 indicates that the references are to the high-order byte of a
memory address.

3 indicates that the references are to both bytes of a memory
address. In this case, the OFFSET (see below) refers to the
low-order byte of the address, and the high-order byte follows the
low-order byte. Note that both bytes being Rfixed up" must be
present in the preceding Content Record.

OFFSET

This field denotes the location of the reference to be "fixed up",
by giving its address as an offset from the base of the Rowning"
Segment. This offset must specify a data byte within the previous
Content Record.

8080 Object Module Formats page 15

EXTERNAL REFERENCES RECORD

* * * * * * *
* REC * RECORD * LO * EXTERNAL * OFFSE'r * CHK *
* TYP * LENGTH * HI * NAME * * SUM *
* 20H * * BOTH* INDEX * * *
* * * * * * *

+-------REPEATED--------+

Zero or more of these Records may be used to indicate which bytes in
the preceding Content Record contain references to locations in
other Modules. These locations are identified by sequences of
characters called "Names": these Names must be previously defined in
an External Names Record. This Record identifies one or more of
these references.

LO HI BOTH

This field indicates what kind of references in the preceding
Content Record are selected by this Record. This byte must have
value 1, 2 or 3, corresponding to LO, HI or BOTH:

1 indicates that the references are to the low-order byte of a
memory address.

2 indicates that the references are to the high-order byte of a
memory address.

3 indicates that the references are to both bytes of a memory
address. In this case, the OFFSET (see below) refers to the
low-order byte of the address, and the high-order byte follo,,",s the
low-order byte. Note that both bytes being "fixed up" must be
present in the preceding Content Record.

Each reference is defined by a pair of fields:

EXTERNAL NAME INDEX

This number identifies a Name by giving its indGx in the External
Names Dictionary, which is implicitly defined by the External Names
Records within the Module (see External Names Record, above). It is
required that the definition of an External Name (in some External
Names Record) pr ecede the occur rence of an EXTERNAL NAt-IE INDEX field
that refers to it.

OFFSET

This field denotes the location of the reference to be .. fixed up",
by giving its address as an offset from the base of the "owning"
Segment. This offset must specify a data byte within the previous
Content Record.

page 16 8080 Obj ect fwiodule Formats

MODULE ANCESTOR RECORD

**********************/\/\/**********
* * * * *
* REC *
* TYP *
* lOH *
* *

RECORD
LENGTH

* MODULE
* NAME
*

* CHI<. *
* SUH *
* *
* *

**********************/\/\/**********

This Record, if present, provides
progenitor Module for all line
encountered in the following Line
Symbols Records.

the identity of the ultimate
numbers and/or local symbols

Numbers Records and/or Local

The Module Header Record, in addition to its normal functions, alsu
serves as a Module Ancestor Record. This defines the method whereby
a line number and/or local symbol may be associated with the name of
its original containing Module.

MODULE NMIE

This field gives the Name of the Module in which the following Line
Numbers Records and/or Local Symbols Records have been defined
originally.

8080 Object Module Formats

LOCAL SYMBOLS RECORD

/\/\/**************
* * * * * * \ /* *
* REC * RECORD * SEG * OFFSET * SY[O,BOL * \ I * CHK *
* TYP * LENGTH * I D * * NAME * X * SUM *
* 12H * * * * * / \ * *
* * * * * */ * *
/\/\/**************

1 !
+----------REPEATED-----------+

page 17

This Record provides the vehicle by which a translator may pass to a
debugger program information about symbols (Le., Names) that were
used in the source language input to the translator that produced
the Module. It is intended that this information may be useful to
ICE or other debugger programs.

This information is processed, but not used, by LIB, LINK or LOCATE.

The symbols in the Record are deemed to have been originally defined
in a source l10dule of Name given by the most recently preceding
l-10dule Ancestor Record (or, if none, by the Module named by the
Module Header Record).

This Recore declares one or more symbols. Each symbol is defined by
a trio of fields.

SEG ID

This field identif ies a Segment by giving its ident i fying number.
All Symbols defined in this Record belong to this Segment.

OFFSET

Thi s field def ines the location of the symbol within the Segment
identified in the SEG ID field.

SYl>1BOL NAt-IE

This is the symbol (Name, Identifier, label, etc.) used in the
source language.

·X II FIELD

This field is reserved for use by future Intel software, it must
contain a zero.

page 18 8080 Object Module Formats

LINE NUMBERS RECORD

* * * * * * *
* REC *
* TYP *
* 08H *
* *

RECORD
LENGTH

* SEG *
* I D *
* *
* *

OFFSET * LINE
* NUMBER
*
*

* CHK *
* SUf.l *
* *
* *

1
+-------REPEATED--------+

This Record provides the vehicle by which a translator may pass to a
debugger program the correspondence between a line number in source
code and the corresponding object code. It is intended that this
information may be useful to ICE or other debugger programs.
Normally only the source lines for which executable object code was
g~nerated need to be identified.

This information is processed, but not used, by LIB, LINK or LOCATE.

The lines identified in the Record are
or ig inally def ined in a source Module of
recently preceding Module Ancestor Record
Module named by the Module Header Record).

deemed to have been
Name given by the most

(or, if none, by the

This Record declares one or more line numbers. Each line number is
defined by a trio of fields.

SEG ID

This field identifies a Segment by giving its identifying number.
All line numbers defined in this Record belong to this Segment.

OFFSET

This offset defines the location within the Segment where the object
code for the corresponding source line begins.

LINE Nm:BER

The 2 bytes provide, in binary, a line number between 0 and 65535,
inclusive.

8080 Object Module Formats

END OF FILE RECORD

* * * *
* REC *
* TYP *
* OEH *
* *

RECORD
LENGTH

(OOOlH)

* CHK *
* SUM *
(FlH)
* *

page 19

This Record indicates the end of file on a physical medium. To aid
media transparency, it is required on all files.

page 20 8080 Object Module Formats

LIBRARY HEADER RECORD

* * * * * * *
* REC * RECORD * MODULE * BLOCK * BYTE * CHK *
* RYP * LENGTH * COUNT * NUMBER * NUMBER * SUM *
* 2CH * (OOO7H) * * * * *
* * * * * * *

This Record is the first record in a library file. It immediately
precedes the modules (if any) in the library. Following the lliodules
(if any) are 3 more records (oescr ibed on the following pages) in
order: Library Module Names Record, Library Module Locations
Record, and Library Dictionary Record.

MODULE COUNT

This field indicates how many modules are in the 1 itr ary.
have any value from 0 to 65535, inclusive.

BLOCK NUMBER, BYTE NUMBER

It may

Th~se fields indicate the relative location of the first byte of the
Library Module Names Record in the library file.

8080 Object Module Formats

LIBRARY MODULE NAMES RECORD

**********************/\/\/**********
* * * It *
* REC * RECORD * MODULE * CHK *
* TYP * LENGTH * NAME * SUlwl *
* 28H * * * *
* * * * *
**********************/\/\/**********

1 1
+--REPEATED-+

page 21

This Record gives the names of all the modules in the library. The
order of the names correspond to the order o~ the modules within the
library. Only one Library Module Names Record may appear in the
library.

HODU LE NAME

The i'th MODULE NAME field in the Record contains the module name of
the i'th module in the library.

page 22 8080 Object Module Formats

LIBRARY HODULE LOCATIONS RECORD

* * * * * *
* REC * RECORD * BLOCK * BYTE * CHK *
* TYP * LENGTH * NUMBER * NUMBER * SUH *
* 26H * * * * *
* * * * * *

! !
+--------REPEATED-------+

This Record provlaes the relative location, within the library file,
of the fir st byte of (the Module Header Record of) each module.
Only one Library Module Locations Record may appear in the library.

The order of the block-number/byte-number pairs corresponds to the
order of the modules within the library.

BLOCK NUMBER, BYTE NUMBER

The i I th pair of fields provices the relative location y;lthin the
library file of the first byte of the first record of the ilth
module within the library.

8080 Object Module Formats

LIBRARY DICTIONARY RECORD

**********************/\/\/***************k
* * * * * *
* REC * RECORD * PUBLIC * * CHK *
* TYP * LENGTH * NAME * * SUM *
* 2AH * * * a OH * *
* * * * * *
* *~ . * * * * * * * * * * * * * * * It

! !!
+--REPEATED-+
+----REPEATED-----+

page 23

This Record gives all the names of public symbols within the modules
in the library. Only one Library Dictionary Record may appear in
the library.

Since a name must have a non-zero length, the '00' bytes in the
format are distinguishable from the PUBLIC NAME fields. Thus, the
'00' bytes separate the public names into groups; all names in the
i'th group are defined in the i'th module of the library.

PUBLIC NAME

This is the name of a Public symbol in the module. No Public symbol
may appear more than once in this Record.

page 24 8080 Object Module Formats

PROPER ORDER OF RECORDS

An Object Module or a Library is defined by a sequence of Records.
Th~ followi~g syntax shows what orderings of Recorcs are valid, and
th~ following semantics give important information that is conveyed
by the sequence, rather than mere content, of records. Definition
of a valid string of Records is given by the following syntax:
(Note: <"ITE.'1::> + means the<"ITEM ::>can occur one or more times ,<ITEM>*

means the < :TEM"> can occur zero or more times.)

4. VALID INPUT'> ::= <.MODULE> + <..EOF RECORD'>
! <. LIB HEADER RECORD> <-MODULE'> * < LIB TAl L "> < EOF RECORD:

~ MODULE') :: = <: MOD HDR"> (COMPONENT'> * < MODULE END RECORD '>

< MOD HDR'7 :: = <.f.10DULE HEADER RECORD:> ~ NAHED COf.1l-lON DEFINITIONS RECORD

~ COMPONENT,> : : = "EXTERNAL NAMES RECORD '>
1 ,,-PUBLIC DECLARATIONS RECORD'"
! ~CONTENT DEFINITION ~
! ~ DEBUG RECORDS ">

~ CONTENT DEFINITION." :: = ('CONTENT RECORD '> ~ FIXUP RECORDS,> *

< FIXUP RECORDS"> : : = .(. RELOCATION RECORD '>
! ~INTER-SEGMENT REFERENCES RECORD~

~ EXTERNAL REFERENCES RECORD "»

.{ DEBUG RECORDS"'> :: = £. MODULE ANCESTOR RECORD '>
<. LOCAL SYMBOLS RECORD ':;.
< LINE NUMBERS RECORD '>

~ LIB TAIL'> : : = ~ LIB MODULE NAMES RECORD'> (, LIB MODULE LOCATIONS RECORD
< LIB DICTIONARY RECORD"'>

8080 Object Module Formats

The following semantics obtain:

1. All Named Common Definitions
immediately after the Module Header Record.

Records

page 25

must follow

2. A Fixup Record always refers to the previous Content Record.

3. A Line Numbers Record, or a Local Symbols Record, is deemed
to have originated in a Module named by the immediately preceding
Module Ancestor Record, if any, otherwise in the Module itself
(i.e., the Module named by the Module Header Record).

4. All External Names Records must precede all Fixup Records
that refer to them.

page 26 8080 Object Module Formats

APPENDIX: RECORD FORMATS for HANDY REFERENCE

~ODULE HEADER RECORD

**********************/\/\/***~****
;\' * * * \ 1* \ 1* * * * '"
* REC * RECORD * MODULE * \ I * \ I * SEG * SEGMENT * ALN * CHK *
* TYP * LENGTH * NAME * X * X * I D * LENGTH * TYP * SUM *
* a 2H * * * I \ * ~ \ * ** * *
* * * */ */ * * * * *
**********************~'***

MODULE END RECORD

! !
+-------REPEATED--------+

/\/\/********
* * * * * * * *
* REC * RECORD * MOD * SEG * OFFSET * OPTIONAL * CHK *
* TYP * LENGTH * TYP * I D * * INFO * SUM *
* 04H * * * * * * *
* * * * * * * *
/\/\/********

8080 Object Module Formats

NAMED COMMON DEFINITIONS RECORD

****************************/\/'/**********
* * * * * *
* REC * RECORD * SEG * COMt-10N * CHK *
* TYP * LENGTH * I D * NAME * SUM *
* 2EH * * * * *
* * * * * *
****************************/\/\/**********

! !
+----REPEATED-----+

EXTERNAL NM-1ES RECORD

**********************/\/,/****************
* * * *\ 1* *
* REC * RECORD * EXTERNAL * \ / * CHK *
* TYP * LENGTH * NA}lE * X * SUM *
* l8H * * * ,'* *
* * * */ * *
**********************/\/\/****************

! !
+----REPEATED-----+

PUBLIC DECLARATIONS RECORD

/\/\/**************
* * * * * *\ ,* *
* REC * RECORD * SEG * OFFSET * PUBLIC *' / * CHK *
* TYP * LENGTH * I D * * NAME * X * *
* l6H * * * * * / \ * II'

* * * * * */ * *
1'1\1********* *****

1 !
+-----------REPEATED----------+

page 27

page 28 8080 Object Module Formats

CONTENT RECORD

* * * * * * *
* REC *
* TYP *
* 06H *
* *

RECORD
LENGTH

* SEG *
* I 0 *
* *
* *

OFFSET * OAT
*
*
*

* CHK *
* SUM *
* *
* *

RELOCATION RECORD

! !
+-RPT-+

* * * * * *
* REC * RECORD * LO * OFFSET * eHR *
* TYP * LENGTH * HI * * SUH *
* 22H * * BOTH* * *
* * * * * *

+--REPEATED-+

INTER-SEGMENT REFERENCES RECORD

* * * * * * *
* REC *
* TYP *
* 24H *
* *

RECORD
LENGTH

* SEG * LO *
* I 0 * HI *
* * BOTH*
* * *

OFFSE'f * eHK *
* SUM *
* *
* *

!

+--REPEATED-+

EXTERNAL REFERENCES RECORD

* *
* REC *
* TYP *
* 20H *
* *

RECORD
LENGTH

* *
* LO * EXTERNAL
* HI * NAME
* BOTH* INDEX
* *

*
* OFFSE'f
*
*
*

* *
* CHK *
* SU1o1 *
* *-
* *

!

+-------REPEATED--------+

8080 Object Module Formats

MODULE ANCESTOR RECORD

**********************/\/\/**********
* * * * *
* REC * RECORD * MODULE * CHK *
* TYP * LENGTH * NAME * SUM *
* 10H * * * *
* * * * *
**********************/\/\/**********

LOCAL SYMBOLS RECORD

/\/\/**************
* * * * * *\ 1* *
* REC * RECORD * SEG * OFFSET * SYMBOL * \ I * CHK *
* TYP * LENGTH * I D * * NAl-1E * X * SUH *
* l2H * * * * * / \ * *
* * * * * */ * *
/\/\/**************

! !
+----------REPEATED-----------+

LINE NUMBERS RECORD

**
* * * * * * *
* REC * RECORD * SEG * OFFSET * LINE * CHK *
* TYP * LENGTH * I D * * NUMBER * SUl>l *
* OSH * * * * * *
**

+-------REPEATED-------+

page 29

page 30 8080 Object Module Forrr.ats

END OF FILE RECORD

************k************

* *
* REC *
* TYP *
* OEH *
* *

RECORD
LENGTH

(000 lH)

* *
* CHK *
* SUH *
(F1H)
* *

8 08 a Obj ect "1odu1e Formats

LIBRARY HEADER RECORD

**
* * * * * * *
* REC * RECORD * MODULE * BLOCK * BYTE * CHK *
* TYP * LENGTH * COUNT * NUMBER * NUMBER * SUl-l *
* 2CH * (OOO7H) * * * * *
* * * * * * *
**

LIBRARY l-10DULE NAMES RECORD

*********************/\/\/**********
* * * * *
* REC *
* TYP *
* 28H *

RECORD *
LENGTH *

*

MODULE
NAME

* CHK *
* SUH *
* *

* * * * *
* * * * * * * * * * '* * * * * * * * * * * /\ / \/ * * * * * * * * * *

! 1
+--REPEATED-+

LIBRARY MODULE LOCATIONS RECORD

* * * * * *
* REC * RECORD * BLOCK * BYTE * CHK *
* TYP * LENGTH * NUl-1BER * NUMBER * SUM *
* 26H * * * * *
* * * * * *

+-------REPEATED--------+

LIBRARY DICTIONARY RECORD

**********************/\/\/***************k
* * * * * *
* REC * RECORD * PUBLIC * * CHK *
* TYP * LENG'fH * NAl-lE * * SUM *
* 2AH * * * a OB * *
* * * * * *
**********************/\/\/****************

! !!
+--REPEATED-+
+----REPEATED-----+

page 31

page 32 8080 Obj ect Module Formats

APPENDIX: SEGr~NT COMBINATION

When two or ~ore modules are linked together by LINK, "like"
segments are "combined" into a single segment for the output module;
e.g., all the Code Segments are "combined" into a single Code
Segment. The nature of "combining" depends on the segment,
sometimes two segments being "combined" are concatenated, and
sometimes only the lengths of the two segments are ~sed to define a
new "combined" segment.

A module may contain different segments (see section entitled
Segmentation of Programs above). Each segment may have one of three
alignment types: In-page relocatable (IP), Page relocatable (PR),
and Byte relocatable (BR). Each segment's alignment type is
specified in its Module Header Record (described ~bove). These
alignment types specify the way segments are placed in memory for
execution.

The 8080 memor~' is often considered as being partitioned into
"pages", where a page is 256 contiguous bytes (and the high order
byte of the memory address of each byte is the same). This concept
gains utility from the fact that two 8080 registers, e.g. Hand L,
are used to specify a memory address. If a value is put into H,
then 256 different (and contiguous) bytes may be specified by the
256 possible different values place~ in the L register. These bytes
are said to form a "page". A "page boundary" is the first byte of a
"page" (i.e., the low order byte of the memory address is zero).

A segment wi th alignment type IP must be of length 256 bytes or
less, and it must be located within a single page, anywhere in
memory; i.e., it must not cross a page boundary. Such segments ~ill
typically be referenced by first setting H, and thereafter modifying
only L.

A segment with alignment type PR must be located such that the first
byte of the segment is at a page boundary, anywhere in memory. Such
segments are typically referenced by other segments in a method
whereby the content of the HL register pair is made to point into
the segment: and thereafter Hand L are independently manipulated to
reference other sections of the segment. Observe that it is
frequently possible to change L, without changing H, because E
selects the page, and L selects the byte wi thin the page. Less
frequently, H will be independently changed.

A segment with alignment type BR may be located anywhere in memory.

When two segments are "combined", the alignment types of each
segment must be preserved in the resultant combined segment;
furthermore the resultant alignment type must guarantee that ani'
future linkage operations on the segment will not violate the
original alignment types of its constituent sub-segments.

8080 Object Module Formats page 33

COMBINING TWO ABSOLUTE SEGMENTS

Combination of two Absolute Segments is analogous to the union of
two sets, where each byte in an Absolute Segment is analogous to a
set element. However, if the same byte is defined in each Absolute
Segment being combined, it will be defined twice in the resultant
Absolute Segment. This causes an error message to be generated by
LINK and LOCATE.

COMBINING TWO CODE SEGMENTS

Let Sl and S2 be Code Segments that are to be combined to form a
single Code Segment S3. Let Ll and L2 be the lengths of the
segments, respectively, as. specified in their r·1odule HeadEr
Records. Define LIp as the smallest mUltiple of 256 that is greater
than or equal to Ll.. The following table indicates the alignment
type and length of S3, as· a function of the alignment types and
lengths of Sl and S2.

IP

Sl PR

BR

IP
S2
PR BR

+------------+------------+------------+
Ll + L2

(IP)
or

LIp + L2
(PR)

!
LIp + L2

(PR)

Ll + L2

(PR)
!

+------------+------------+------------+
Ll + L2

or
LIp + L2

(PR)

LIp + L2

(PR)

Ll + L2

(PR)

+------------+------------+------------+
1

Ll + L2
or

LIp + L2
(PR)

!
!

LIp + L2

(PR)

Ll + L2

(BR)

+------------+------------+------------+

When two In-page relocatable (IP) Code Segments are combined, the
resultant Code Segment is In-page relocatable (IP) if Ll + L2 ~ 256:
otherwise the resultant Code Segment is Page relocatable (PR).

When S2 is In-page relocatable (IP) and Sl is not, the length of S3
will be Ll + L2 if LIp - Ll ~L2: otherwise the length of 53 will be
LIp + L2.

page 34 8080 Object Module Formats

Combination of two Code Segments is in general not commutative with
respect to the layout of memory or the length of the combinec'
segment. For example, the length of combining Sl with S2 may be
different frcm combining 52 with 51.

When the size of the resultant Code Segment is LIp + L2, and
LIp> Ll, then the spaces between Sl and S2 are permanently lost.
These areas represent a ftgapft in the Code Segment. These gaps, when
formed, are reported in the map produced by LINK.

COZ>1BINING n~o DATA SEGHENTS

Data Segments are combined in exactly the same manner as Code
Segments, as described in the preceding section.

COMBINING TWO STACK SEGMENTS

The length of the Stack Segment given in the Module Header Record is
the minimum stack size required for successful execution of the
Module.

The length of the combined Stack Segment is the sum of the lengths
of the two Stack Segments being combined. If both Stack segments
are Byte relocatable (BR), then the resultant Stack Segment ~ill be
Byte relocatable CBR); otherwise the resultant Stack Segment is page
relocatable (PR).

COMBINING TI'i'O l-1EMORY SEGHENTS

The length of the Hemory Segment given in the Module Header Record
is the minimum number of bytes in this segment required by the
l-lodule.

The length of the combined l-1emory Segment is the larger length of
the two Hemory Segments being combined. If both Memory Segments are
Byte relocatable (BR), then the resultant Memory Segment \o.'ill be
Byte relocatable (BR); otherwise the resultant Memory Segment will
be Page relocatable (PR).

COt-lBINING TWO NAMED COMMON SEGl-1ENT5

Named Common Segments are different from other segments in that they
do not have pre-defined segment numbers. In fact, two Named Common
Segments will be selected for combination not by the equality of
their segment number, but by the equality of their Names as defined
in the Named Common Definitions Record.

The lengths of the two Named Common Segments being combined must be
the same: otherwise a warning message is generated. The length of
the combined Named Common Segment is the larger length of the two
Named Common Segments being combined (if the lengths arc
different) • If both Named Common Segments are Byte relocatable
(BR) , then the resultant Named Common Segment w ill be Byte
relocatable (BR)i otherwise the resultant Named Common Segment will
be Page relocatable (PR).

8080 Object Module Formats page 35

COMBINING TWO UNNAMED COMMON SEGMENTS

The length of the combined Unnamed Common Segment is the larger
length of the two Unnamed Common Segments being combined. If both
Unnamed Common Segments are Byte relocatable (BR), then the
resultant Unnamed Common Segment will be Byte relocatable (BR);
otherwise the resultant Unnamed Common Segment will be Page
relocatable (PR).

page 36 8080 Object Module Formats

AFPENDIX: SEGMENT LOCATING

The LOCATE program will allow the user to assign absolute memory
addresses to the different segments in an object module. This can
be done using either user defined bases and orders or default bases
and orders (see the ISIS-II USER'S GUIDE for more informacion on the
LOCATE program). Default ordering will lead to the followicg memory
organization:

high address ************************~*

low address

*
*
*

MENORY Segment

*base

*
*
*
*

*
*
*

DATA Segment

*base

*
*
"
*

*
* NA1-1ED/UNNAMED COM1-10N

*
*
* * Segments (if any)

*base *

*
* STACK Segment
*

base*
*
*

* *
*
*

CODE Segment

*base

*
*
*

<- HE!vlCK

This organization allows the Data Segment to grow dynamically into
the unused memory space. By judicious choice of labels and the use
of the MDS MONITOR function MEMCK, the user can programmatically
determine the lengths of all Segments.

The length of the Memory Segment is always computed to be the amount
of available memory on the system the module is LOCATEd. If the
module is executed on the same system, the Memory Segment length
calculated by LOCATE is correct. If the module is executed on a
different system, the actual amount of memory depends on the
configuration of that system. LOCATE has no knowledge of the
configuration of the target system.

8080 Object Module Formats page 37

Note that all segments grow upward from their base except for the
Stack Segment, which grows downward due to hardware design.

LOCATE will resolve references to the MD10RY and STACK
Translators will issue Inter-Segment References Records
respective reserved words that reference these bases.

The base of the Absolute Segment is memory address zero.

bases.
for the

	Front page
	Preface
	Contents
	Introduction
	Segmentation of programs
	Record format diagrams
	Common record fields
	02-Module header
	04-Module end
	2E-Named common definitions
	18-External names
	16-Public declarations
	06-Content
	Fixup records
	22-Relocation
	24-Inter-segment references
	20-External references

	Debug records
	10-Module ancestor
	12-Local symbols
	08-Line numbers

	0E-End of file
	Library records
	2C-Library header
	28-Library module names
	26-Library module locations
	2A-Library dictionary

	Proper order of records
	Appendix
	Record formats
	Segment combination
	Segment locating

